

Material, Methodology and Inspection Technology for Structural Joints in Modular Integrated Construction

Dr. MA Xu

Guangdong Provincial Academy of Building Research Group Co.,Ltd.

卷度 服務

Contents

PART 01

Background and Significance

1

Prefabricated building

2020, above 20% of new constructions will be **Prefabricated building**

(a) 预制梁

(c)预制柱

(b)预制梁柱节点

(d)预制楼梯

Joint connection

Connection method

- Grout sleeve splicing
- Grout anchor overlap
- Bolt connection
- Welding connection

PART 02

Introduction

Grout sleeve

Half grout sleeve

Grout + Mechanical connection Prefabricated wall Prefabricated column

Complete grout sleeve

Grout + Grout connection Mainly Prefabricated beam

Application

2

Prefabricated concrete shear wall

Application

Prefabricated concrete frame beam

Application

Prefabricated concrete frame column

Installation process of frame column

Gasket

Hoisting

Installation process of frame column

Airflow

Grouting

Installation process of frame column

Mechanical grouting

Manual grouting

Influencing factors of connection quality

Influencing factors of grout sleeve splicing

Related standards

《装配式混凝土建筑技术标准》GB/T 51231-2016 Architecture

《装配式混凝土结构技术规程》JGJ 1-2014 Structure

《钢筋机械连接通用技术规程》JGJ107-2003 Mechanical connection

《钢筋连接用套筒灌浆料》JG/T 408-2013 Cementitious grout

《钢筋连接用灌浆套筒》JG/T 398-2012 Grout sleeve

《钢筋套筒灌浆连接应用技术规程》JGJ 355-2015 Application standard

PART 03

Standard requirements

Good fluidity Early strength

High strength

Slight expansion

表 3.1.3-1 灌浆料抗压强度要求

Curing time 时间(龄期)	抗压强度 (N/mm ²) Compressive strength
1d	≥35
3d	≥60
28d	≥85

表 3.1.3-2	灌浆料	竖向	膨胀	率要	求
-----------	-----	----	----	----	---

项目		竖向膨胀率(%Vertical expans	sion rate
3h		≥0.02	
Difference value 24h 与 3h 美	自住	0.02~0.50	

表.	3.	1.3-3	灌浆料拌合物的工作性能要求	
----	----	-------	---------------	--

		项目	工作性能要求
Liquidity 流动度 (mm)	Initial 初始	≥300	
	30min	≥260	
	泌	水率 (%)	0

Grout sleeve

球墨铸铁灌浆套筒的材料性能	Cast iron

性能指标	
≥550	
≥5	
≥85	
180~250	
	性能指标 ≥550 ≥5 ≥85 180~250

钢质机械加工灌浆套筒的材料性能 Steel machining

	项目	性能指标
Yield Str	ength 屈服强度 σ _s (N/mm ²)	≥ 355
Tensile st	rength抗拉强度 ob (N/mm ²)	≥ 600
	断后伸长率δ(%)	$\geqslant 16$

Rebar

Anchor length of Rebar \geq 8 times of rebar diameter

3.1.2 灌浆套筒应符合现行行业标准《钢筋连接用灌浆套筒》 JG/T 398 的有关规定。灌浆套筒灌浆端最小内径与连接钢筋公称直径的差值不宜小于表 3.1.2 规定的数值,用于钢筋锚固的深 度不宜小于插入钢筋公称直径的 8 倍。

钢筋直径 (mm)	套筒灌浆段最小内径与连接钢筋公称直径差最小值 (mm)
12~25	10
28~40	15

表 3.1.2 灌浆套筒灌浆段最小内径尺寸要求

The connection

3.2.2 钢筋套筒灌浆连接接头的抗拉强度不应小于连接钢筋抗 拉强度标准值,且破坏时应断于接头外钢筋。

3.2.3 钢筋套筒灌浆连接接头的屈服强度不应小于连接钢筋屈服强度标准值。

3.2.4 套筒灌浆连接接头应能经受规定的高应力和大变形反复 拉压循环检验,且在经历拉压循环后,其抗拉强度仍应符合本规 程第 3.2.2条的规定。

	项目			
对中单向拉伸	残余变形 (mm)	$u_0 \leqslant 0.10 \ (d \leqslant 32)$ $u_0 \leqslant 0.14 \ (d > 32)$		
	Elongation (%)	$A_{ m sgt} \geqslant 6.0$		
高应力反复拉压	残余变形 (mm)	$u_{20} \leqslant 0.3$		
大变形反复拉压	残余变形 (mm)	$u_4 \leqslant 0.3 \amalg u_8 \leqslant 0.6$		

表 3.2.6 套筒灌浆连接接头的变形性能

High stress

repeated tension and compression

Large deformation

PART 04

Research on cementitious materials

Early strength High strength

Good fluidity

Mixing amount of expanding agent

Mixing amount of defoamer

Balance between expansion and porosity

	Compressive strength			Fluidity		Vertical expansion rate	
	/ MPa		/ mm		/ %		
	1d	3d	28d	Initial	30min	3h	Difference
							24h and 3h
Produced	38.6	71.8	102.6	347	315	0.2	0.04
Requirement	35	60	85	≥300	≥260	≥0.02	0.02~0.50

Cementitious materials for overlap joint

项	日	性能指标	试验方法标准
泌水	奉 (%)	0	《普通混凝土拌合物性能试验方法标准》 GB/T 50080
流动度	初始值	≥200	《水泥基灌浆材料应用技术规范》
(mm)	30min 保留值	≥150	GB/T 50448
the standard standard	3h ≥0.02		
竖向膨胀率 (%) 膨胀率之差		0.02~0.5	《水泥基灌浆材料应用技术规范》 GB/T 50448
	1d	≥35 ,	
抗压强度	3d	≥55	《水泥基灌浆材料应用技术规范》 CB/T 50448
(MFa) 28d ≥80		≥80	00/1 50448
氯离子	含量 (%)	≪0.06	《混凝土外加剂匀质性试验方法》 GB/T 8077

钢筋浆锚搭接连接接头用灌浆料性能要求

Cementitious materials for sealing

判 派	科抗压蚀度、抗折蚀度要求					
	项目	技术指标				
	1d	≥30				
抗压强度(MPa)	3d	≥45				
	28d	≥65				
抗折强度(MPa)	28d	≥7				
	封浆料竖向膨胀率要求					
	技术指标					
収 向 膨肥 (ω)	3h	≥0.02				
笠问膨旅举(%)	24h 与3h 差值	0.02~0.30				
封浆料工作性能及氯离子含量要求						
	技术指标					
流动度(mm)	流动度 (mm) 初始					
氯离子含量	≤0.03					
巡水率	0					

村府村长山市中 长长地中中大

PART 05

Influence by grouting defects

Experiment --- Making defects

5

Experiment --- Grouting

Experiment --- **Tensile test**

Rebar

Grout sleeve splicing

Experiment --- Results

No.	Anchor length of Rebar	Test result	No.	Anchor length of Rebar	Test result
1-1	8d	Rebar break	2-1	8d	Rebar break
1-2	7d	Rebar break	2-2	7d	Rebar break
1-3	5d	Rebar break	2-3	6d	Rebar break
1-4	3d	Rebar pullout	2-4	4d	Rebar pullout
1-5	7d	Rebar break	2-5	7d	Rebar break
1-6	5d	Rebar break	2-6	6d	Rebar break
1-7	3d	Rebar pullout	2-7	4d	Rebar pullout
1-8	8d	Rebar break			

Experiment --- Results

	No.	Anchor length of Rebar	Test result	No.	Anchor length of Rebar	Test result
	1-1	8d	Rebar break	2-1	8d	Rebar break
	1-2	7d	Rebar break	2-2	7d	Rebar break
Ī	1-3	5d	Rebar break	2-3	6d	Rebar break
	1-4	3d	Rebar pullout	2-4	4d	Rebar pullout
	1-5	7d	Rebar break	2-5	7d	Rebar break
	1-6	5d	Rebar break	2-6	6d	Rebar break
	1-7	3d	Rebar pullout	2-7	4d	Rebar pullout
	1-8	8d	Rebar break			

Experiment --- Results

1/1/		
1/1/		
HILE R.		Ŧ
The second	A second	
7		

No.	Anchor length of Rebar	Test result	No.	Anchor length of Rebar	Test result
1-1	8d	Rebar break	2-1	8d	Rebar break
1-2	7d	Rebar break	2-2	7d	Rebar break
1-3	5d	Rebar break	2-3	6d	Rebar break
1-4	3d	Rebar pullout	2-4	4d	Rebar pullout
1-5	7d	Rebar break	2-5	7d	Rebar break
1-6	5d	Rebar break	2-6	6d	Rebar break
1-7	3d	Rebar pullout	2-7	4d	Rebar pullout
1-8	8d	Rebar break			

Influence by grouting defects

Experiment --- Results

Anchor length: at least 5d for this test condition

Influence

Grouting strength

No.	Anchor length of Rebar	Test result	No.	Anchor length of Rebar	Test result
1-1	8d	Rebar break	2-1	8d	Rebar break
1-2	7d	Rebar break	2-2	7d	Rebar break
1-3	5d	Rebar break	2-3	6d	Rebar break
1-4	3d	Rebar pullout	2-4	4d	Rebar pullout
1-5	7d	Rebar break	2-5	7d	Rebar break
1-6	5d	Rebar break	2-6	6d	Rebar break
1-7	3d	Rebar pullout	2-7	4d	Rebar pullout
1-8	8d	Rebar break			

PART 06

Detecting techniques

The problems:

Sleeve grouting is not full The strength of cementitious grout is low The position deviation of reserved rebar is large The embedded rebar is cut off Cracks occur during lifting and transportation

Detecting is very important!

The related standards:

- Shanghai:《装配整体式混凝土建筑检测技术标准》 (DG/T 08-2252-2018)
- Beijing: 《装配式混凝土结构工程施工与质量验收规程》 (DB42T 1225-2016)
- Shandong:
 《装配式混凝土结构现场检测技术标准》

 (DB37/T 5106-2018)
- Tianjing: 《装配式建筑预制混凝土构件质量与检验标准》 (DB/T29-245-2017)
- Guangdong: 《装配式混凝土建筑工程施工质量验收规范》 (DBJ/T 15/71-2019)

Filling fullness of grouting

1) Pre-embedded detecting techniques

2) Nondestructive detecting techniques

3) Partial-destructive detecting techniques

At present, no widely nondestructive testing method is available yet!

1) Pre-embedded sensor

Vibrational energy is different

1) Pre-embedded sensor

1) Pre-embedded sensor

Need to be installed in advance!

2) Pre-embedded steel pull-off method

Need to be installed in advance!

The pull-off pressure is different

3) X-ray technique (CT)

图1 X 射线胶片成像原理

Thickness below 200mm is applicable for now.

a 射线机定位

b 墙体背面粘贴暗袋

钢筋接头处

4) Impact-echo method

Failure to effectively identify internal defects at present!

5) Ultrasonic method

Failure to effectively identify internal defects at present!

At present, the quality control is mainly focused on the construction process and manufacturing process.

Concealed work after construction is difficult to be effectively detected.

Effective detecting technique is lacking!

A combination of multiple detecting techniques The development of new equipment and detecting techniques

A combination with machine learning, wireless transmission, 5G network ...

创新发展 服务社会 444,04+1048.4.4

Summary

- Prefabricated building will be more and more popular.
- Joint connection is the most important part, which influence the safety and durability of the building.
- Grout sleeve splicing is the most common connection method, but problems exist at present.
- ◆The effective detecting techniques for grouting defects is lacking.
- \bullet We can make the cementitious grout with a good quality.

Thanks For Your Attention!

Dr. MA Xu maxuTUD@163.com