

ANNUAL SEMINAR 2020 MAIN THEME: Modular Integrated Construction – Issues and Solutions

MiC – New Era of Building Construction

Prof. Tarek Zayed, PhD, PE, PEng, F.ASCE, F.CSCE

Department of Building and Real Estate, The Hong Kong Polytechnic University

25th November 2020

Presentation Agenda

MiC: Impact of Introduction & Benefits and State-of-the-• • ٠ Current Challenges of Art Several Technology MiC **Factors** Gaps 2 3 4 STATE OF Concluding Lessons ۲ Learned from Remarks Other **Countries** 5 6

建筑及唐州走展到

IONAL + COLLABORATIVE + CONSTRUCTIO

Hong Kong Housing Problem

HK Population: 7.37Millions

HA provided public rental housing (PRH) to 2.0 million people, 28% until Mar 2018

Target: 460,000 units (2017 – 2027)

- Falling short of 266,400 units
- Shortage of skilled labor
- MiC is the solution to achieve such target

Limitations of Prefabricated Components Approach

Two decades in HK

Cannot cope with the set

target and demand of units.

- \succ High transportation cost.
- High probability of damages.
- >Need installation equipment,

skilled labor, and additional

supervision.

Government Public Policy Towards MiC

- In 2018, HKSAR in its public policy gave the green light for full scale promotion of MiC, to enhance the productivity and cost-effectiveness of projects.
- In the same public policy address, HKSAR encouraged the adoption of MiC in public projects and asserted on stakeholders collaboration to push further in adoption of MiC.

Presentation Agenda

Time.

- 🔶 Sustainable & Clean.
- Technology-based manufacturing.
- 🔶 Quality.

Safety.

Faster operation.

etc

TIME SAVING

Overlapping between on-site and off-site.

MiC can eliminate almost 80% of the construction site activities.

• MiC can cut down construction duration by (40%)Vs. conventional.

Benefits of MiC from Case Studies

S/N	Benefits	C1	C2	C3	C4	C5	C6	C7	C 8	C9	C10
1	Shortens construction time	1	1	1	1	1	1	1	1	1	1
2	Cost reduction		1								
3	Improved quality									✓	
	Improved safety (zero										
4	accidents)									1	
5	Enhanced sustainability						1				1

Note: C1 = Victoria Hall; C2 = Mini Sky City; C3 = NTU North Hill Residence Hall; C4 = Crowne Plaza Changi Airport hotel extension; C5 = Folsom Fairfield Inn; C6 = NTU Nanyang Crescent Hostel; C7 = Woodlands Nursing Home; C8 = Yuzana low-cost housing projects; C9 = Brownstone Executive Condominium; C10 = The Clement Canopy

Time Saving (Ave 25%)

Project	Year of completion	Country	% change in construction time
Victoria Hall	2009	UK	-40%
Mini Sky City	2015	China	-40%
NTU North Hill Residence Hall	2015	Singapore	-6%
Crowne Plaza Changi Airport hotel extension	2016	Singapore	-17%
Folsom Fairfield Inn	2016	USA	-30%
NTU Nanyang Crescent Hostel	2017	Singapore	-20%
Woodlands Nursing Home	2017	Singapore	-20%
Yuzana low-cost housing projects	2018	Myanmar	-40%
Brownstone Executive Condominium	2018	Singapore	-10%
The Clement Canopy	2019	Singapore	-25%

GARANTEED TIME SAVING

 ✓ Very important advantage for Hong Kong

Extra Cost (Ave +10%)

Project	Year of completion	Country	% change in construction cost
Mini Sky City	2015	China	-30%
NTU North Hill Residence Hall	2015	Singapore	18%
Crowne Plaza Changi Airport hotel extension	2016	Singapore	12.50%
Folsom Fairfield Inn	2016	USA	0%
The Clement Canopy	2019	Singapore	7.50%

11

SUSTAINABILITY

- Reduction in noise & disruption by 30 50%.
- 76% of researchers confirmed that MiC reduces wastage.
- Decrease CO₂ emissions due to the reduction of transportation.
- Modular home reduced energy consumption by 4.6% and CO₂ by 3% over a 50-year life.

QUALITY & TECH-BASED OPERATIONS

- Controlled & protected environment
- Better TQM application
- Workers have better learning curves.
- High building specifications easily applied

MiC Challenges in Hong Kong

Design & Standards.

Manufacturing.

Transportation.

Critical Challenges of MiC

Criteria	Sub-Criteria		
Project Characteristic (PC)	Site access		
	On-site storage area		
	Productivity		
	Initial cost		
	Legal requirement		
Transportation Aspect (TA)	Transportation method		
	Distance between site and factory		
	Road network capability or capacity		
Stakeholder Collaboration (SC)	Contractor capability and experience		
	Fabricator capability and experience		
	Owner willingness		
	Design freeze		
	Coordination among practitioners		

MiC Challenges in Hong Kong

Criteria	Challenges	Geometric mean	Rank
	Site access	0.0785	4
	On-site storage area	0.0674	5
РС	Productivity	0.0613	6
	Initial cost	0.0587	7
	Legal requirement	0.017	13
	Transportation method	0.1237	2
TA	Distance between site and factory	0.0584	8
	Road network capability or capacity	0.1398	1
	Contractor capability and experience	0.0173	11
	Fabricator capability and experience	0.0172	12
SC	Owner willingness	0.0227	10
	Design freeze	0.0993	3
	Coordination among practitioners	0.0306	9

Presentation Agenda

Opening Minds • Shaping the Future • 啟迪思維 • 成就未來

State-of-the-Art

RESEARCH STATUS

- 27% Building Design •
- 23.4% Management ٠

40

50

RIMENT OF ILDING & REAL ESTATE

IONAL + COLLABORATIVE + CONSTRUCTION

建築及房地產學系

40

17.8% Construction Operations

29

30

34

State-of-the-Art

SUCCESS FACTORS

Ranking of CSFs for MiC adoption in Hong Kong

Aggregated global weights and ranking of CSFs

Categories	CSFs	Aggregated Global Weights	Rank
	Recognition and acceptance by industry (I1)	0.025	12
Industry Factors (I)	Existence of knowledge and experience (I2)	0.027	10
	The capability of supporting organizations (I3)	0.033	9
	Establishment of government legislation (G1)	0.068	3
Government Factors (G)	Provision of government incentives (G2)	0.055	5
	Presence of government investment (G3)	0.051	6
	Client's understanding and willingness (S1)	0.071	1
Stakeholder Factors (S)	Contractor's leadership and support (S2)	0.026	11
	Cooperation of critical stakeholders (S3)	0.025	12
	Reduction of construction time (PD1)	0.046	8
Performance-driven Factors	Reduction of construction cost (PD2)	0.048	7
(PD)	Enhancement of Quality (PD3)	0.022	15
	Suitable site characteristics and layout (PS1)	0.070	2
Project-specific Factors (PS)	Comprehensive transportation evaluation	0.057	4
DEPARTMENT OF	Adoption of ICT	0.023	14
BUILDING & REAL ESTATE		1	

INTERNATIONAL + COLLABORATIVE + CONSTRUCTION

Opening Minds • Shaping the Future • 啟迪思維 • 成就未來

manufacturers

Rankings of Critical Success Factors

Category	Critical Success Factors	Local	Global	Ranking
		Weights	Weights	
	F1: Complexity of the Project	0.1566	0.0263	16
וח	F2: Availability of service/ facilities for MiC	0.2613	0.0438	13
וס	F3: Availability of logistics and transportation	0.2796	0.0469	11
	F4: Availability and proximity of MiC manufacturers	0.3026	0.0508	10
	F5: Financial Capability	0.4627	0.1625	1
D2	F6: Time Capability	0.3569	0.1253	2
	F7: Excessive changes during construction	0.1804	0.0633	3
	F8: Competence	0.2787	0.0538	9
	F9: Commitment	0.1731	0.0334	15
D3	F10: Cooperation	0.2323	0.0448	12
	F11:Availability of installation equipment and	0.3159	0.0609	5
	technology for MiC			
D4	F12: Transparency in procurement	0.48	0.0589	6
D 4	F13: Competitive procurement and tendering method	0.51	0.0626	4
	F14: Industry-related issues	0.2268	0.0383	14
DE	F15: Economic	0.3282	0.0554	7
05	F16: Government policies and regulations	0.3266	0.0552	8
	F17: Social	0.1184	0.0199	17
DEPARTMENT OF		All and a second se		22

建築及房地產學系

RNATIONAL + COLLABORATIVE + CONSTRUCTION

State-of-the-Art

Benefits of BIM applications ranking results in Hong Kong MiC Industry

BIM apps in MiC	Mean score values	Rank	AHP values	Rank
3D Visualization	4.19	2	0.11	4
Clash Detection	4.51	1	0.19	
Better Communication and Coordination	4.17		0.17	2
Analysis, Simulation, and Optimization	3.70	4	0.13	3
Parametric Modelling	3.06	5	0.10	5
Quantities Take-off and Cost Estimation	2.68	6	0.09	6
Improved Pre-Fabrication Level	2.23	8	0.07	7
Scheduling and Logistic Planning	2.32	7	0.07	7
Assembly Training with BIM	2.19	9	007	

State-of-the-Art

Barriers of BIM implementation to Hong Kong MiC Industry

BIM barriers in MiC	Mean score values	Rank	AHP values	Rank
AEC Professionals Resistant to Change	3.55	3	0.14	4
High Initial Cost	3.94	2	0.26	2
Insufficient Training and Lacking BIM	4.15	1	0.30	1
Professionals		********		**
Legal Responsibilities and Liability Issues	2.83	5	0.10	5
Lack of Collaborations Between Parties	3.47	4	0.19	3

Presentation Agenda

MiC: Impact of Several Factors Logistics and Transportation: JUST IN TIME(JIT) in MiC

 JIT is the delivery of the required material, quantity, and quality on the required time.

Advantages:

- Increase of efficiency.
- Reduction of waste and costs (inventory costs).

MiC: Impact of Several Factors <u>JIT CHALLENGES</u>

- 1 Reliable suppliers.
- 2- Stable production (no breakdown).
- 3- Collaborative supply chain by information sharing.

- Toyota took 15 years to perfect JIT.
- How long it will take from MiC stakeholders?

MiC: Impact of Several Factors JIT CHALLENGES

1- Prefabricated components

2- Panelized construction

3-MiC

4- Civil infrastructure

MiC: Impact of Several Factors <u>JIT CHALLENGES</u>

To apply JIT, we need:

Transportation planning Inventory planning

Information management

Opening Minds • Shaping the Future • 啟迪思維 • 成就未來

MiC: Impact of Several Factors CRANE OPERATION IN MIC

No. of cranes?

Location of pickup point?

Sequence of lifting activities?

Crane location?

(to avoid

collisions)?

Design of foundation and lateral support?

建练及房批走墨

MiC: Impact of Several Factors OBJECTIVES OF CRANE OPERATION IN MIC

WEATHER IMPACT

DING & REAL ESTATE 建築及廣地產學系

 Proper planning of MiC installation stage can achieve 10% reduction in installation duration

Presentation Agenda

Table 1

Summary of policies concerning modular construction.

	Item	Source
Mainland	1. Opinions on Further Promoting the Development of Assembled Buildings	Document
China	2. Implementation Opinions on Accelerating the Modernization of the Construction Industry and Promoting the Upgrade of the Construction	Document
	Industry	
Hong Kong	1. 2018 Policy Address and Policy Agenda	Document
	2. 2017 Policy Address and Policy Agenda	Document
	3. Construction Innovation and Technology Fund (CITF)	Website
Singapore	1. Building Control (Buildability and Productivity) Regulations 2011	Document
	2. 1st Construction Productivity Roadmap	Document
	3. 2nd Construction Productivity Roadmap	Document
	4. Integrated Construction and Prefabrication Hub (ICPH)	Website
	5. Prefabricated Prefinished Volumetric Construction (PPVC)	Website
	6. Construction Productivity and Capability Fund	Website
	7. Building Innovation Panel (BIP)	Website

Table 2

Summary of specifications concerning modular construction.

	Item	Hierarchy
Mainland China	 Specification for design of prefabricated monolithic modular building (Exposure Draft) (abbreviated as Specification for design) Specification for construction and acceptance of prefabricated monolithic modular building (Exposure Draft) (abbreviated as Specification for construction and acceptance) Specification for isolation technology of prefabricated monolithic modular building (Exposure Draft) (abbreviated as Specification for isolation technology of prefabricated monolithic modular building (Exposure Draft) (abbreviated as Specification for isolation technology of prefabricated monolithic modular building (Exposure Draft) (abbreviated as Specification for isolation technology of prefabricated monolithic modular building (Exposure Draft) (abbreviated as Specification for isolation technology of prefabricated monolithic modular building (Exposure Draft) (abbreviated as Specification for isolation technology of prefabricated monolithic modular building (Exposure Draft) (abbreviated as Specification for isolation technology of prefabricated monolithic modular building (Exposure Draft) (abbreviated as Specification for isolation technology of prefabricated monolithic modular building (Exposure Draft) (abbreviated as Specification for isolation technology of prefabricated monolithic modular building (Exposure Draft) (abbreviated as Specification for isolation technology of prefabricated monolithic modular building (Exposure Draft) (abbreviated as Specification for isolation technology of prefabricated monolithic modular building (Exposure Draft) (abbreviated as Specification for isolation for isolation technology of prefabricated monolithic modular building (Exposure Draft) (abbreviated as Specification for isolation technology of prefabricated monolithic modular building (Exposure Draft) (abbreviated as Specification for isolation for isolation technology of prefabricated monolithic modular building (Exposure Draft) (abbreviated as Specification for isolation for isolation	Association's standards
Hong Kong	 PNAP ADV-36 Appendix A: Design Requirements for Modular Integrated Construction (Building Department, 2017) PNAP ADV-36 Appendix B: Quality Control and Supervision of MiC (Building Department, 2017) 	Regulations
Singapore	1. Design for Manufacturing and Assembly-Prefabricated Prefinished Volumetric Construction (Guidebook)	Technical specifications

Policy Comparison of China, Hong Kong and Singapore

Fig. 3. The analysis framework of policies.

All policies aim to directly increase the supply of modular buildings in the market, or to provide a lenient environment to develop modular buildings, which then indirectly increase the supply.

BUILDI

谜 INTERNATIONAL The government issued related policies

sectoral

coordination

The government did not issue related policies As of Dec. 2018 mainland Hong Kong Singapore China Goal Goal Control and regulation Land supply Approval Economic incentive Subside Tax break Award Supporting Logistic activities support Government

Project: Victoria Hall

Location: England

No. of Floors: 25

Use of Building: Student Accommodation

Status: Completed 2009

Modules: 824 each, 10 to 25 tons

Achievements

- ✓ Duration: **32 weeks using eight workers**
- ✓ Rate: 7 modules per day, 15 modules in peak
- ✓ Time saving: over 50 weeks
- ✓ Landfill: reduction by around 70%

Project: Clement Canopy Location: Singapore No. of Floors: 40 Use of Building: Residential Status: Completed 2019 Modules: 1,866 modules, 65% superstructure, 27 tons, 40-tons tower cranes

Achievements

- ✓ Height: 140 meters, highest MiC concrete.
- ✓ Wastage: reduction 70% onsite & 30% offsite.

Project: 461 Dean Street, "Atlantic Yards"/ "Pacific Park"

Location: **New York, US** No. of Floors: **32** Use of Building: **Residential** Status: **Completed 2016**

Achievements

- Height: 109 meters, 1st
 MiC high-rise tower
- Modules: 930, 225 different designs

Features

- New plant "FCModular", 4 modules per day.
- Bathroom assembly was most laborious task.
- Special trucks & JIT.

Presentation Agenda

Concluding Remarks

- MiC is revolutionizing the construction industry.
- MiC is a suitable solution for housing problem in Hong Kong.
- Requires effort to harness its benefits.
- Requires thorough feasibility studies, design management and proper planning.
- Advanced techniques (JIT, BIM, IoT, etc.).

4D Visualization of Module Assembly

Opening Minds • Shaping the Future • 啟迪思維 • 成就未來12

Thank You

- Prof. ZAYED, Tarek
- ☆ tarek.zayed@polyu.edu.hk
- http://www.bre.polyu.edu.hk/staff/tarek_zayed/index.htm

