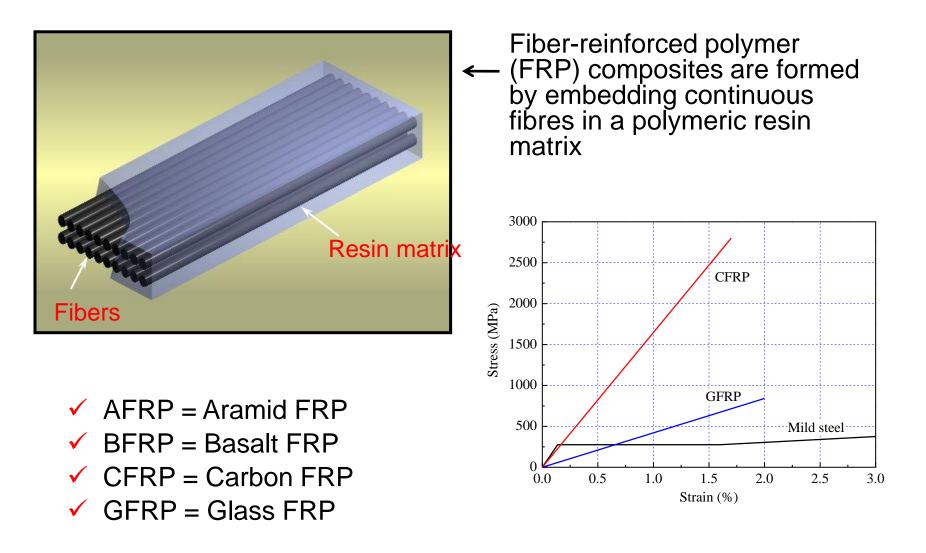
Annual Seminar of Hong Kong Concrete Institute 19 January 2024

Use of Fibre-reinforced Polymer (FRP) Composites for Strengthening Concrete Structures

YU, Tao 余濤 *Professor in Structural Engineering* Department of Civil and Environmental Engineering The Hong Kong Polytechnic University

DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING 土木及環境工程學系

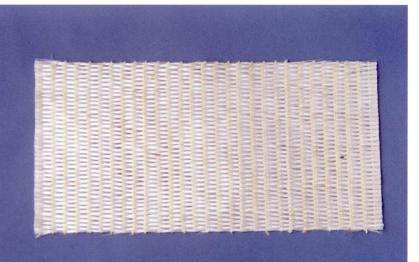
Opening Minds • Shaping the Future 啟迪思維 • 成就未來

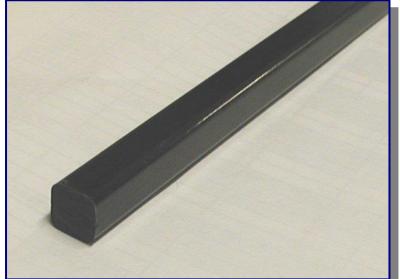

Outline

- 1. Introduction
- 2. Design of FRP-strengthened concrete structures
- 3. Practical applications of FRP in strengthening concrete structures
- 4. Concluding remarks

This PPT file are based mainly on slides developed over the years by Prof. Jin-Guang TENG and Prof. Tao YU.

Fibre-Reinforced Polymer (FRP) Composites




DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING 十太及環境工程學系

FRP Products for Strengthening Applications

Advantages of FRP Strengthening

Have all the advantages of steel plates for plate bonding

Speedy application; Minimal increases in structural weight and size.

High strength/weight ratio

Lifting equipment eliminated; Reduced labour cost.

Flexibility in shape

Can be handled in rolls; easy for wrapping on curved surfaces and around columns.

Tailorability of material properties

Through fiber orientations and lamination structures High resistance to corrosion and other chemical attacks

Durable performance.

DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING 十本及環境工程學系

Ibach bridge 1991

First use of CFRP to strengthen a structure

CFRP strips were going to be prepared

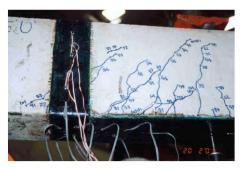
only 6 working hours!

Courtesy of Prof. Urs Meier

Opening Minds • Shaping the Future • 啟迪思維 • 成就未來

FRP Strengthening of Concrete Structures: Typical Strengthening Scheme

(https://www.structuremag.org/?p=8643)



FRP Strengthening of Concrete Structures

Strengthening of concrete structures with externally-bonded FRP reinforcement

Bond-critical applications
 ✓ Debonding failures

Contact-critical applications
 Confined concrete

DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING 土木及環境工程學系

Debonding Failure

DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING 十太及環境工程學系

FRP Confinement for Columns

Dynamic collapse test on eccentric reinforced concrete structures with and without seismic retrofit, Yousok Kima, , , Toshimi Kabeyasawaa, Shunichi Igarashib

a doi:10.1016/j.engstruct.2011.09.017

FRP Strengthening of Concrete Structures Extensive Research and Design Guidance Exist

Extensive research has been conducted at PolyU on the theory of FRP-strengthened concrete structures; the research outcomes of PolyU have been widely adopted by design guidance documents around the world.

Design Principles and Requirements FRP strengthening system

The design of an FRP strengthening system* aims to ensure an acceptable level of probability that the structure or structural member strengthened with the FRP system will perform satisfactorily during the design working life.

With an appropriate degree of safety, the system should:

- ✓ Sustain all loads and deformations of normal construction and use;
- ✓ Remain fit for the purpose of its intended use;
- ✓ Have adequate durability for its environment; AND
- ✓ Have adequate resistance to the effects of misuse and fire.

* An FRP strengthening system is defined to include the FRP material, the bonding adhesive, and the associated primer and putty materials.

Assessment of Existing Structures

To identify the deficiencies, establish the existing loadcarrying capacity, determine the suitability of the FRP strengthening technology, define the performance requirements for the system.

Such an assessment should cover the following:

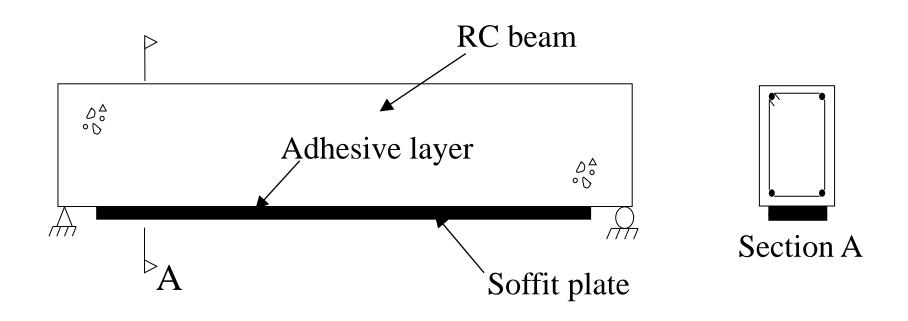
- A review of existing design calculations and drawings or as-built documents;
- A site investigation; and
- A structural analysis of the existing load-carrying capacity, based on the review of documents and the information gathered from the site investigation.

Basic Principles for FRP Strengthening

- The FRP strengthening system should be so designed that the FRP is only called upon to resist tensile forces.
- The strain compatibility between the FRP and the concrete is ensured by **adhesive bonding** (plus mechanical anchoring where appropriate).
- The compressive strength of FRP should be neglected in the event that the FRP experiences compression due to moment reversals or load pattern changes.

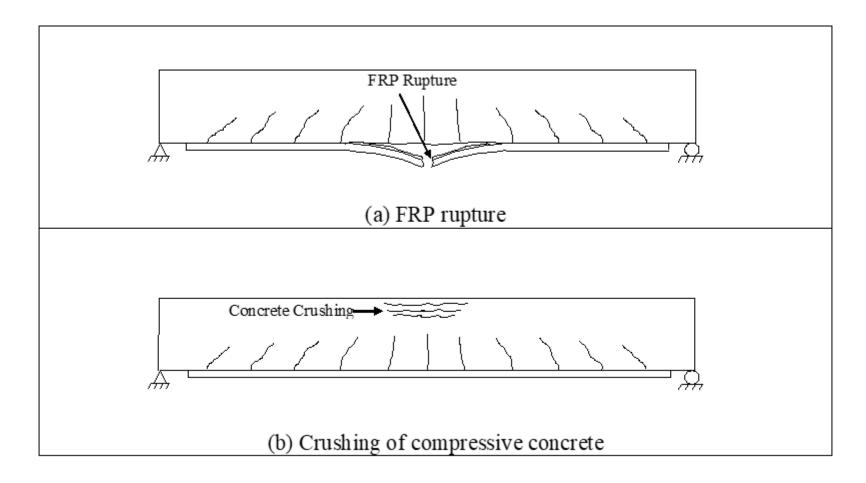
Basic Principles for FRP Strengthening

Long-term performance and durability: 1) environmental factors including the effects of moisture, temperature, freeze and thaw cycles, and ultraviolet (UV) radiations; 2) chemical attacks by alkaline, acidic, or salt solutions; and 3) loading conditions such as sustained loads or cyclic loads which may cause the creep rupture or fatigue failure of FRP composites.

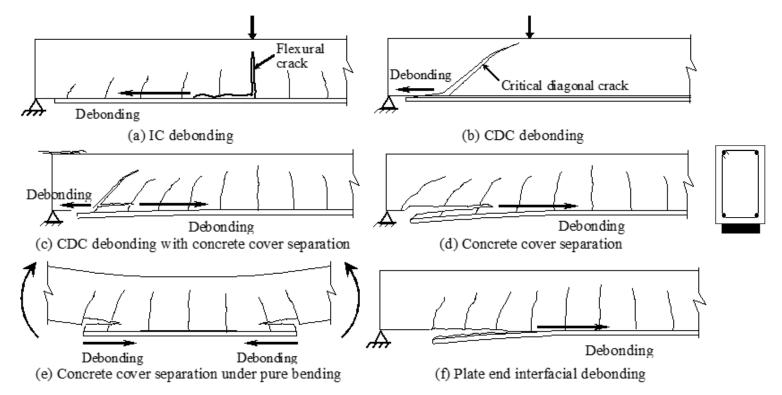

Design value = $\frac{1}{\gamma_m}$ × characteristic value

$$\gamma_{\rm m} = \gamma_{\rm m1} \gamma_{\rm m2}$$

Accounts for differences between actual and laboratory values, local weaknesses and inaccuracy in the assessment of resistance Accounts for long-term strength degradations due to environmental exposure including the effects of moisture/solution, alkalinity, elevated temperature and ultraviolet radiations (UV)

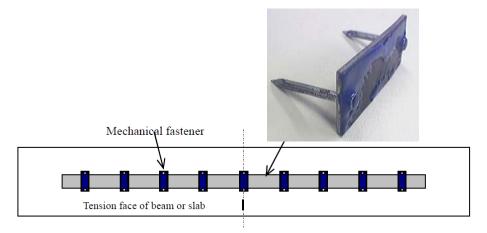


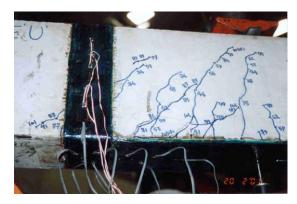
Flexural Strengthening

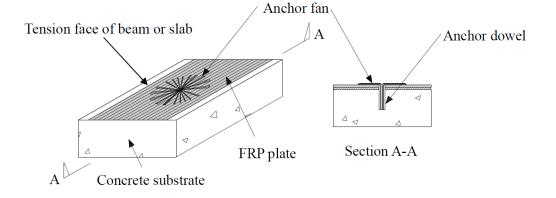


Conventional Failure Modes

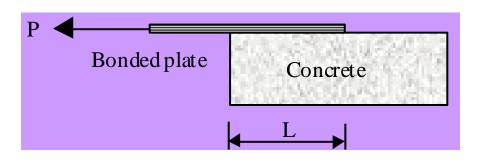
Debonding Failures of FRP-plated RC Beams

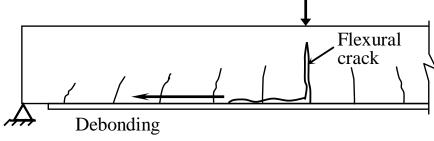

Intermediate crack debonding: (a) Plate end debonding: (b) to (f)

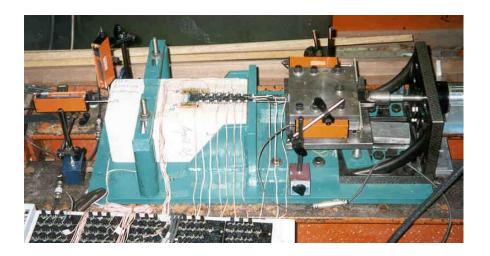



Plate End Debonding

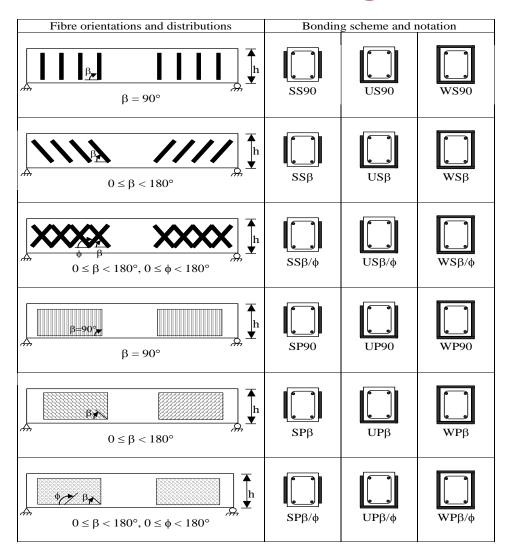
- Due largely to the high interfacial stresses between the FRP plate and the concrete beam near the plate end;
- Should be prevented by additional anchorage at the plate end





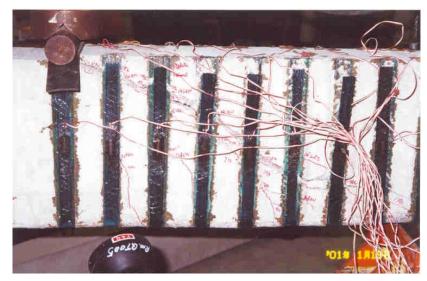


Intermediate Crack Induced (IC) Debonding



Empirical models have been developed based on results from bonded joint tests for the IC debonding strain.

Concrete Beams Shear Strengthened with FRP



Factors to be considered in selecting a strengthening scheme:

- >Accessibility:
 - Can the whole perimeter of a beam be accessed for wrapping?
- Loading type:
 - Monotonic loading, or reversed cyclic loading?
- Required shear capacity increase; and
- Economic considerations.

Concrete Beams Shear Strengthened with FRP

Debonding failure

FRP rupture failure

Opening Minds • Shaping the Future • 啟迪思維 • 成就未來

Shear Capacity

Shear capacity of shear-strengthened RC beams:

$$V_n = V_c + V_s + V_{frp}$$

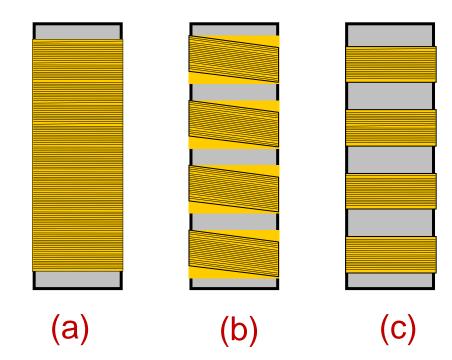
✓ V_c = contribution by concrete
 ✓ V_s = contribution by steel shear reinforcement

 \checkmark V_{frp} = contribution by FRP

 $\bullet\,V_{\rm c}\,\&\,V_{\rm s}$ can be calculated using provisions in an existing code on reinforced concrete structures

Method of Column Strengthening

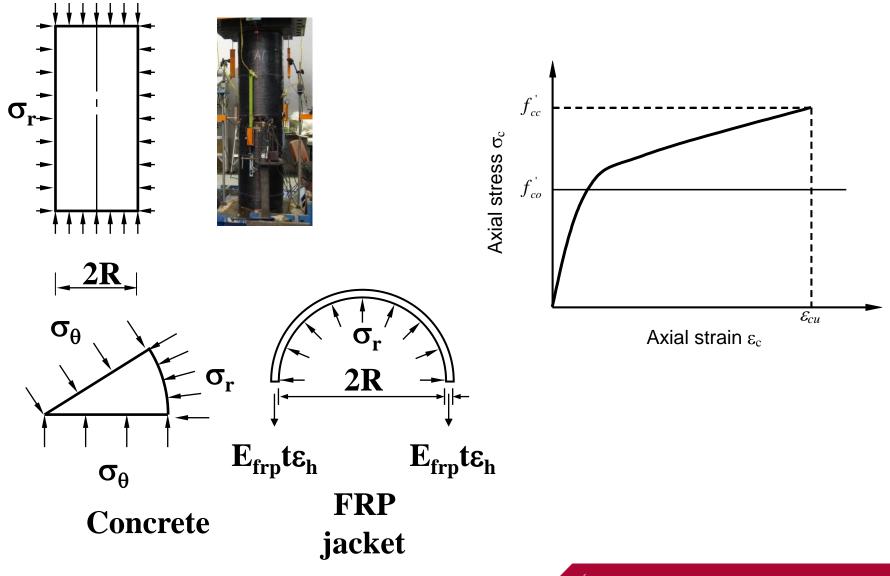
- Wrapping
- Filament Winding
- Prefabricated Shell Jacketing



Machine winding

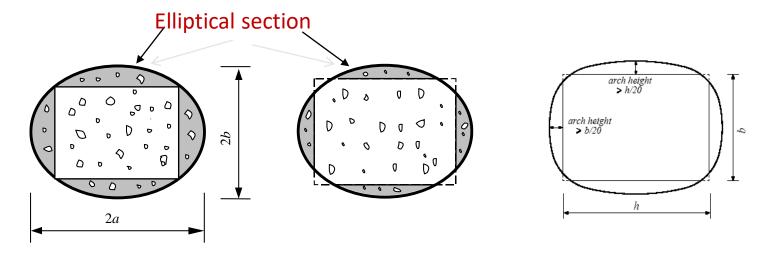
Various Forms of FRP Wrapping

- (a) Full Wrapping
- (b) Wrapping withContinuousSpirals
- (c) Wrapping withDiscrete Rings



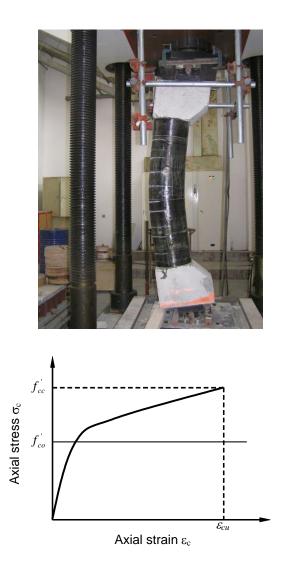
DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING 土木及環境工程學系

FRP-confined Concrete


 σ_{c}

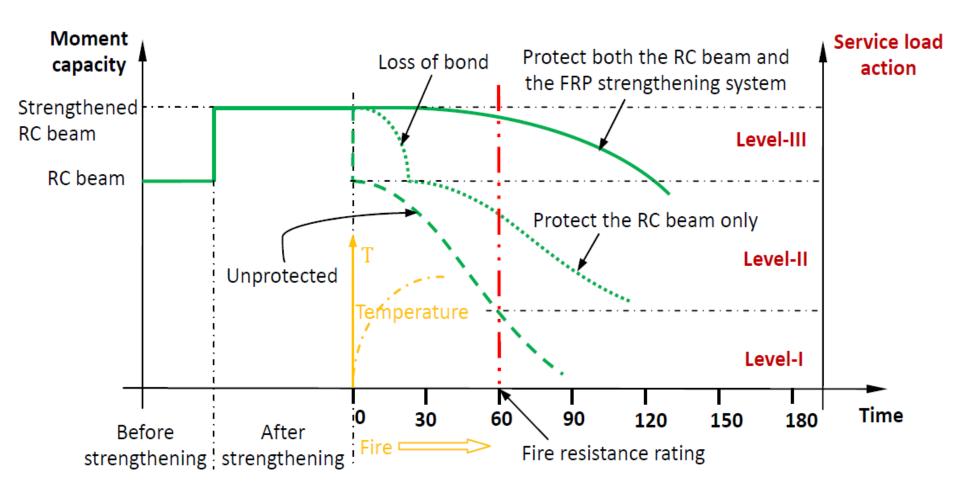
DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING 土木及環境工程學系

Shape Modification

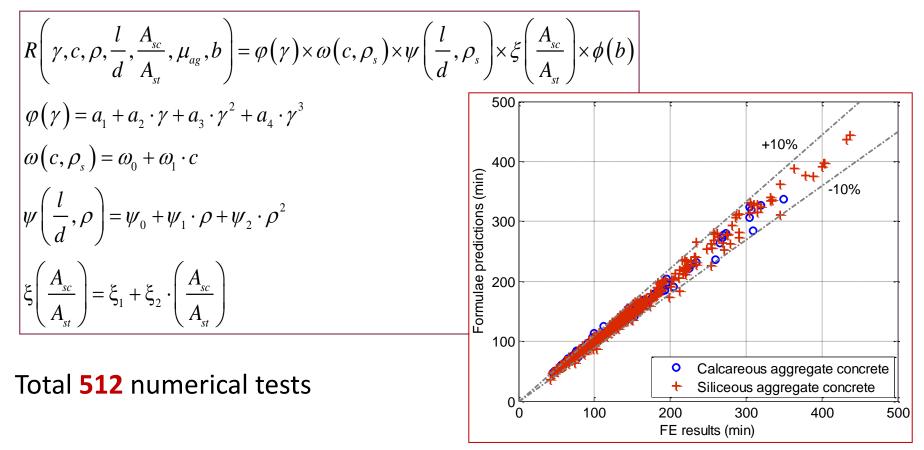

(a) Without rounding

(b) With rounding

(c) Section curvilinearization



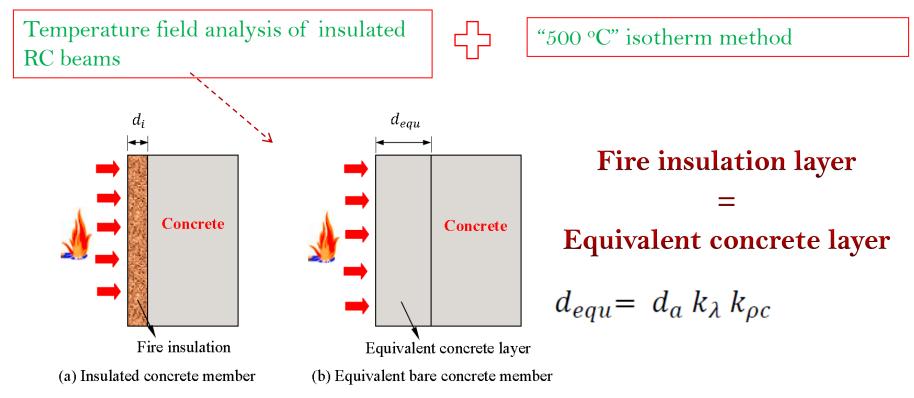
FRP-strengthened Slender Concrete Columns



Gao, W.Y., Dai, J.G., and Teng, J.G. (2018). "Three-level fire resistance design of FRP-strengthened RC beams." *Journal of Composites for Construction*, ASCE, Vol. 22, No. 3, 05018001.

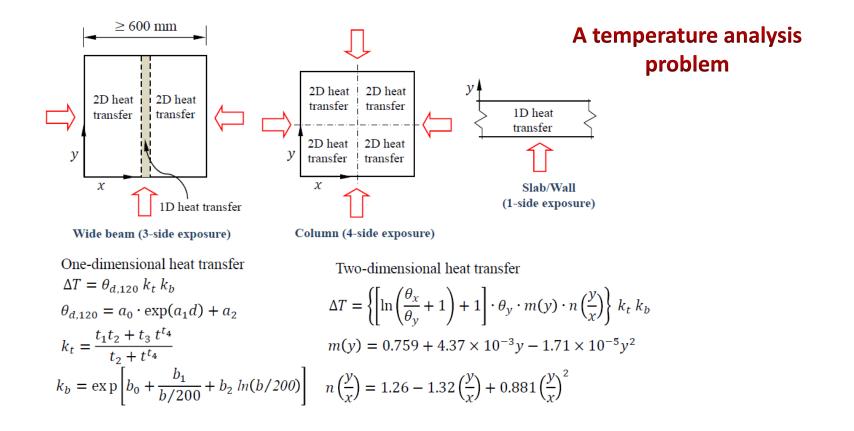
Level-I design (Unprotected FRP-strengthened RC beams)

Design formulae

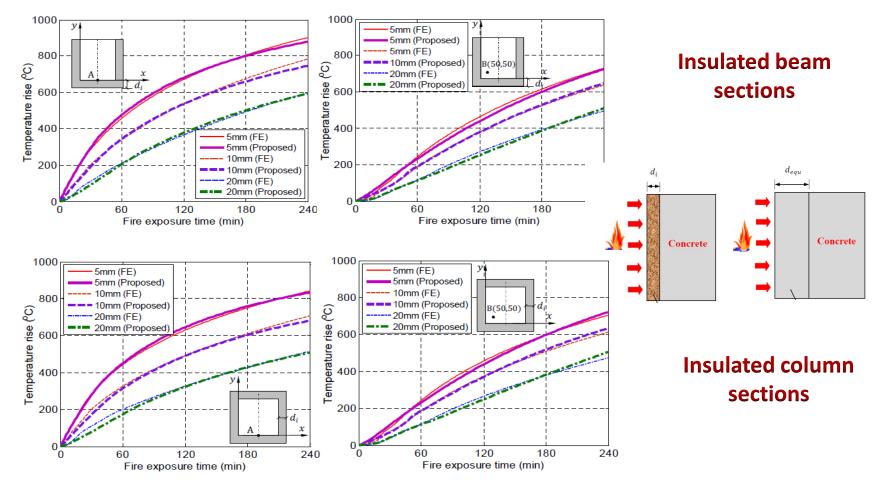


Gao, W.Y., Dai, J.G., and Teng, J.G. (2016). "Fire resistance design of un-protected FRP-strengthened RC beams." *Materials and Structures*, Vol. 49, No. 12, 5357-5371.

Level-II design (Partially protected FRP-strengthened RC beams)


• Simple design method

Gao, W.Y., Dai, J.G., and Teng, J.G. (2015). "Simple method for predicting temperatures in insulated, FRP-strengthened RC members exposed to a standard fire." *Journal of Composites for Construction*, ASCE, Vol. 19, No. 6, 04015013.


Level-III design (Fully protected FRP-strengthened RC beams)

Gao, W.Y., Dai, J.G., and Teng, J.G. (2014). "Simple method for predicting temperatures in reinforced concrete beams exposed to a standard fire." *Advances in Structural Engineering*, Vol. 17, No. 4, 573-589.

Level-III design (Fully protected FRP-strengthened RC beams)

Gao, W.Y., Dai, J.G., and Teng, J.G. (2015). "Simple method for predicting temperatures in insulated, FRP-strengthened RC members exposed to a standard fire." *Journal of Composites for Construction*, ASCE, No. 19, No. 6, 04015013.

Fire resistance design of FRP-strengthened RC structures

中华人民共和国国家标准

UDC

P

GB 50608 - 2020

1 总

2

3

纤维增强复合材料工程应用技术标准

Technical standard for fiber reinforced polymer (FRP) in construction

中华人民共和国任房和城乡建设部 联合发布国家市场监督管理总局

T	心	则			 (1)
2	术	吾和符号 …			 (2)
	2.1	术语			 (2)
	2.2	符号			 (3)
3	基	本规定			 (15)
	3.1	一般规定 …			 (15)
	3.2	设计原则 …			 (15)
1	材	料			 (17)
	4.1	一般规定 …		•••••	 (17)
	4.2	纤维布及纤维	增强复合材料	4	 (17)
	4.3	树脂材料 …	••••••		 (21)
	4.4	表面防护材料			 (23)
5	复材	才片材加固混	凝土结构		 (24)
	5.1	一般规定 …	••••••	• • • • • • • • • • • • • • • • • • • •	 (24)
	5.2	梁、板的抗弯加	1固		 (25)
	5.3	梁、柱的抗剪加	1 (21			36)
	5.4				 (41)
	5.5	柱的抗震加固			 (50)
	5.6				 (52)
	5.7	耐火设计 …		• • • • • • • • • • • • • • • • • • • •	 (55)
j	预几	立力碳纤维复	材板加固油	•凝土结构	 (58)
	6.1	一般规定 …			 (58)
	6.2	抗弯加固设计			 (58)
	6.3	锚具要求 …			 (65)

7 复材片材加固砌体结构 ……………………(67)

• 1 •

目

次

表 5.7.5 复材加固构件的三等级耐火设计方法

等级	选用条件	防火保护措施			
I	$S_{\mathrm{mT}}\leqslant R_{\mathrm{dT}}$	宜在表面粉刷一层不少于 1cm 厚的水泥砂浆用于阻燃,无须采取其他的防火保护措施			
п	$R_{ m dT} < S_{ m mT} \leqslant R_{ m d}$	对原有构件采取防火保护措施,使 S _{mT} ≪ R _{dT} 或 t _{fire} ≥ [t _{fire}]			
ш	$R_{d}\leqslant S_{ m mT}$	采取防火保护措施保护原有构件及复材,应确保复材的 温度在规定的耐火时间内 [<i>t</i> fire] 低于其玻璃化转变温度 Tg			

注:1 R_d为常温下原有构件的极限承载力。

2 R_{dT} 为达到耐火极限状态时原有构件极限承载力。

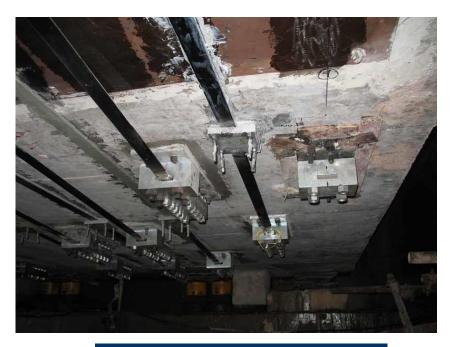
3 [tfire]为《建筑设计防火规范》GB 50016 规定的耐火极限。

FRP Strengthening of RC Structures

(a)

Karbhari, V. M., & Seible, F. (1999). Fiber-reinforced polymer composites for civil infrastructure in the USA. Structural engineering international, 9(4), 274-277.

Zhang, J. S., Karbhari, V. M., Wu, L., & Reynaud, D. (2003). Field exposure based durability assessment of FRP column wrap systems. *Composites Part B: Engineering*, *34*(1), 41-50.


DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING 土木及環境工程學系

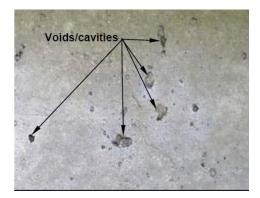
Emergency Strengthening with FRP 应急加固

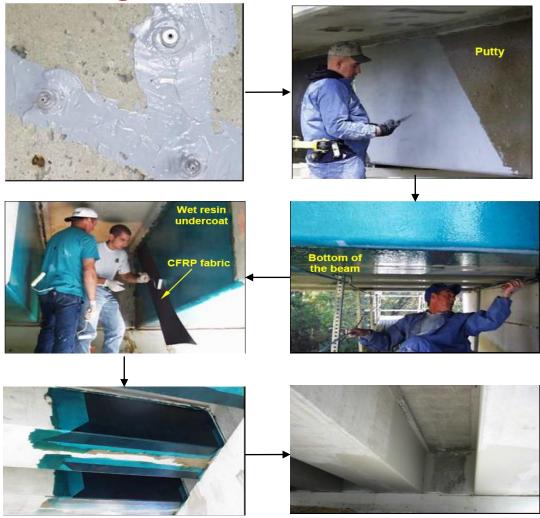
成都机场机库震后应急加固

(图片由冶建院提供)

厦门大嶝大桥火灾后加固

(图片由南京海拓提供)




DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING 土木及環境工程學系

Example of FRP Strengthening Bridge Girders

Simpson, JW, Harik, IE and Chiaw, CC (2006). Shear Repair of P/C Box Beams using Carbon Fiber Reinforced Polymer (CFRP) Fabric, *Research Report*, University of Kentucky.

DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING 十大及環境工程學系

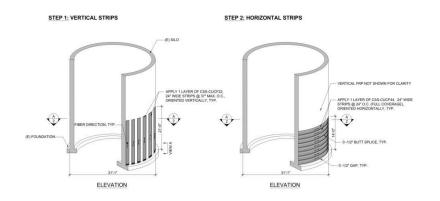
Example of FRP Strengthening Marine Infrastructure

The Friendship Trail Bridge

(b)

https://en.wikipedia.org/wiki/Gandy_Bridge

Winters, D., Mullins, G., Sen, R., Schrader, A., & Stokes, M. (2008). Bond enhancement for FRP pile repair in tidal waters. *Journal of Composites for Construction*, *12*(3), 334-343.


Al Azzawi, M., Hopkins, P., Mullins, G., & Sen, R. (2018). FRP–Concrete Bond after 12-Year Exposure in Tidal Waters. *Journal of Composites for Construction*, 22(5), 04018031.

DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING 十太及環境工程學系

Example of FRP Strengthening Storage Silos

https://seblog.strongtie.com/2019/10/casestudy-shoring-up-aging-concrete-grain-siloswith-fiber-reinforced-polymer/

DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING 土木及環境工程學系

Local Projects

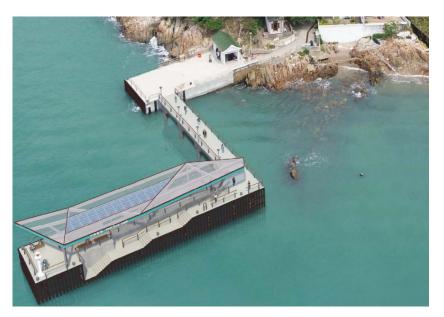
FRP-strengthened cantilever slabs with fibre anchors

DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING 土木及環境工程學系

Local Projects

工程顧問建議引用「纖維增強聚合物復合材料」(FRP)進行復修

滕博士指,雖然內地和外國已應用FRP多年 ,不過針對加固後結構的耐火性研究則不 多,因此香港在審批業界使用FRP時仍抱審 慎態度。不過理大研究小組已就FRP加固後 混凝土結構的耐火設計方法進行研究,並 提出設計方法,能夠確保物料可安全應用 在香港這種高密度城市的樓宇建築中。



FRP for New Construction

Reconstruction Project Pak KoK Pier on Lamma Island, Hong Kong Demonstration: <u>FRP-Reinforced Concrete Slab</u>

Source:https://www.wenweipo.com/a/202211/14/AP63718e7de4 b09044e5126c1b.html

Concluding Remarks

- FRP strengthening has become accepted as a mainstream technology worldwide.
- FRP strengthening systems are particularly advantageous for their speedy installation, corrosion-resistance, flexibility in shape and light weight nature and may be used in various structural applications.

Thank you for your attention !

DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING 土木及環境工程學系

Opening Minds • Shaping the Future 啟迪思維 • 成就未來